Evaluation of Mg Compounds as Coating Materials in Mg Batteries
نویسندگان
چکیده
منابع مشابه
New cathode materials for rechargeable Mg batteries: fast Mg ion transport and reversible copper extrusion in CuyMo6S8 compounds.
We report on a discovery of fast cathode materials, ternary Chevrel phases (CPs), CuyMo6S8, for rechargeable magnesium batteries; the related electrochemical process displays a unique coupling between reversible Mg insertion, and Cu extrusion/ reinsertion; this coupling results in an entirely new intercalation mechanism which combines the total chemical reversibility of the electrochemical reac...
متن کاملPorous Mg thin films for Mg-air batteries.
An alkaline primary Mg-air battery made from a porous Mg thin film displayed superior discharge performances, including a flat discharge plateau, a high open-circuit voltage of 1.41 V and a large discharge capacity of 821 mAh g(-1), suggesting that the electrochemical performances of Mg-air batteries can be improved by controlling the Mg anode morphology.
متن کاملTheoretical Limiting Potentials in Mg/O2 Batteries
A rechargeable battery based on a multivalent Mg/ O2 couple is an attractive chemistry due to its high theoretical energy density and potential for low cost. Nevertheless, metal-air batteries based on alkaline earth anodes have received limited attention and generally exhibit modest performance. In addition, many fundamental aspects of this system remain poorly understood, such as the reaction ...
متن کاملPrussian Blue Mg—Li Hybrid Batteries
The major advantage of Mg batteries relies on their promise of employing an Mg metal negative electrode, which offers much higher energy density compared to graphitic carbon. However, the strong coulombic interaction of Mg2+ ions with anions leads to their sluggish diffusion in the solid state, which along with a high desolvation energy, hinders the development of positive electrode materials. ...
متن کاملMg-Zr-Sr alloys as biodegradable implant materials.
Novel Mg-Zr-Sr alloys have recently been developed for use as biodegradable implant materials. The Mg-Zr-Sr alloys were prepared by diluting Mg-Zr and Mg-Sr master alloys with pure Mg. The impact of Zr and Sr on the mechanical and biological properties has been thoroughly examined. The microstructures and mechanical properties of the alloys were characterized using optical microscopy, X-ray dif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Chemistry
سال: 2019
ISSN: 2296-2646
DOI: 10.3389/fchem.2019.00024